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Results of a numerical investigation of the natural thermogravitational convection of air in horizontal chan-
nels with a Γ-shaped cross section are presented. Two-dimensional unsteady equations of convection in the
Boussinesq approximation, which are written in the velocity vortex–current function–excess temperature vari-
ables, are employed as a mathematical model. In investigating, the range of Rayleigh numbers was bounded
above by the value 106, which corresponds to the range of applicability of the Boussinesq approximation to
air in the problem posed. The boundary-value problem was solved numerically by the finite-element method of
Galerkin (weak formulation). The distinctive features of the temperature and flow fields were revealed on the
basis of calculations and the intensity of heat exchange was evaluated.

Introduction. Investigating convective flows in channels and tubes in the presence of the temperature differ-
ences and the gravity field, one cannot disregard, in many practical cases, the effects caused by the action of buoyancy
forces. If the direction of a buoyancy force is perpendicular to the direction of a forced flow (horizontal channels), this
action manifests itself as the occurrence of secondary (transverse) flow distorting the symmetry of the main flow. Sec-
ondary flow is capable of intensifying significantly heat exchange in the laminar regime [1]; however, natural convec-
tion can have an appreciable effect in the case of turbulent motion, too [2]. The influence of free convection also leads
to a decrease in the length of the initial thermal portion and stimulates transition to a turbulent regime at substantially
smaller Reynolds numbers.

Investigations of free-convective flows in horizontal channels with a square or rectangular cross section or a
circular cross section are rather numerous [3]. Free thermoconvection in channels with a more complex geometry of
the cross section has been investigated to a much lesser degree. These are usually channels with a ring-shaped cross
section [4–6] or that in the form of ring sectors [7, 8]. However, triangular channels, those in the form of a sector of
a circle and a regular polygon, tube bundles, and others are rather widespread. All of them can be used in systems of
cooling of electronic equipment, cooling and ventilation of rooms, magnetohydrodynamic devices, in heat-exchanger
elements, etc.

In works on numerical modeling of convection in complex-shaped regions, use is usually made of the control
volume method (SIMPLE or SIMPLER algorithm) [9] or a combination of the grid methods and the fictitious domain
method [10]. In convection problems, the method involves computation of the fictitious viscosity. However, this pro-
cedure is very laborious and time-consuming in solution of unsteady problems and it deteriorates convergence. The fi-
nite-element method enables one to naturally circumvent these difficulties.

Mathematical Model and Method of Solution. We considered two-dimensional convective flow of a viscous
incompressible fluid. In solving the problem, use was made of the unsteady Boussinesq equations [11] in the velocity
vortex–current function–excess temperature variables written in a Cartesian coordinate system:
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The coordinate axes x and y are in parallel to the width and height of the channel cross section respectively;
the channel is considered to be rather extended along the x axis. The properties of the medium were assumed to be
constant except for the viscosity linearly dependent on the excess temperature.

The calculation domains represented Γ-shaped gaps (channels) between two horizontal coaxial tubes of a
square cross section which were separated by longitudinal baffles (fins) (Fig. 1). The baffles were considered to be
thermally thin with a negligible temperature gradient across their thickness. The Γ-shaped calculation domains (in a
form of a "corner") were considered independently of one another; we also assumed the symmetry of the temperature
and flow fields in the right-hand and left-hand channels relative to a vertical plane passing through the tube axis.

At the channel boundaries, we maintained the following conditions: θ = 0 at the external boundaries, q0 =
−λ grad θ (constant heat-flux density) at the internal boundaries, and ∂θ ⁄ ∂n = 0 on the baffles (fins). The conditions
of impermeability and "sticking" ψ = 0 and ∂ψ ⁄ ∂n = 0 were ensured at all the boundaries; the boundary values of the
velocity vortex were computed from the Woods formula [10]. The initial conditions were ω = 0, ψ = 0, and θ = 0.

Thermoconvective flow was characterized by the following criteria: Grashof number Gr = gβq0H4 ⁄ ν2λ,
Prandtl number Pr = ν ⁄ a (it was set to be unity), and Rayleigh number Ra = GrPr.

In investigating convection in gases, one can expect deviations from the Boussinesq approximation (1)–(4) be-
cause of the compressibility of the gases and the high temperature coefficient of volumetric expansion. Thus, the ap-
plicability of the Boussinesq model to air is evaluated in [12]. The evaluation follows from the assumption that, in
convective transfer, the thermophysical parameters change by no more than 10% as compared to the initial equilibrium
state. This leads to a restriction on the temperature difference of 28.6oC, which is in agreement with [13], where the
range of applicability of the Boussinesq approximation is evaluated by solving the momentum, energy, and continuity
equations with allowance for the temperature dependence of the density and the thermophysical parameters. The error
of the Boussinesq approximation is also investigated in [14] in the problem on free convection of air in a cavity. It is
shown that the Boussinesq approximation is undoubtedly true for the maximum value of the dimensionless excess tem-
perature θm′  ≤ 0.1. Furthermore, even at θm′  = 0.2 and Ra = 106 the Boussinesq approximation correctly determines the
Nusselt number (accurate to 2%). The correlation relation θm′  = 0.0244 Ra0.243 for finding the limiting value θm′  for
which one can calculate heat exchange accurate to 5% with the use of the Boussinesq approximation is given in [14].
The investigations performed in the present work were carried out within the framework of the restrictions obtained in
[14] in the range Ra = 103–106.

Fig. 1. Temperature fields (on the left) and flow fields (on the right) at Ra =
106.
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Equations (1)–(4) were solved successively; each time step began with computation of the excess-temperature
field from Eq. (4), and then we solved the equation for the velocity vortex (1) with account for (3) and the equation
for the current function (2). The excess temperature, the velocity vortex, and the current function were approximated
by a linear combination of time-independent basis functions (form functions) on linear triangular finite elements. The
discrepancy resulting from the approximation is orthogonalized relative to the basis functions, which leads to a system
of equations of the form
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We employed the implicit time scheme for the time approximation. All the steady-state solutions were ob-
tained by the establishment method.

Results and Discussion. The parameters of air (taken at the temperature of the exterior wall T0 = 0oC) were
as follows: density ρ = 1.293 kg/m3, heat capacity cp = 103 J/(kg⋅K), thermal conductivity λ = 0.0244 W/(m⋅K), ki-
nematic viscosity ν = 13.28⋅10−6 m2/sec, and temperature coefficient of volumetric expansion β = 35.33⋅10−4 K−1. The
calculations were carried out with fixed dimensions of the tube sides of 5 cm for the internal tube and 10 cm for the
external tube. The thickness of the Γ-shaped gap (channel) was 2.5 cm and the height was 5 cm.

Figure 1 shows the isotherms (on the left) and the streamlines (on the right) for free-convective air flow at
Ra = 106. In the upper Γ-shaped parts, flows characterized by the opposite rotation of two vortices of dissimilar in-
tensities are formed. The convective flow results from the heating of air at the bottom and on the side; it has the form
of an ascending heat jet and is the most intense near the vertical side walls. The temperature maximum is on the hori-
zontal surface of the internal tube.

In the lower Γ-shaped parts, flows are single-vortex and they are formed in heating on the side and at the
top. Flow is the most intense in the vicinity of the side walls as well; the existence of a considerable region of a
nearly quiescent medium is noteworthy. The temperature maximum is at the juncture of a fin and the interior side
wall. The calculations have shown that variation in the Rayleigh number in the range Ra0 = 103–106 does not lead to
qualitative structural changes of the flow in both the upper and lower parts.

Figure 2 shows a change in the maximum excess temperature θm in the upper and lower Γ-shaped channels
with increase in the Rayleigh number (Ra = 103). To Ra = 105, the temperature maxima in the upper and lower parts
coincide, in practice. This allows the conclusion that, to Ra = 105, heat is transferred predominantly by conduction
(heat-conduction regime). When Ra ≥ 105 (convective regime), more efficiently cooled are the upper parts, which is at-
tributed to the lower maximum temperature (see Fig. 2).

Fig. 2. Change in the maximum excess temperatures in the upper (1) and
lower (2) channels with increase in the Rayleigh number.

Fig. 3. Change in the intensity of circulation of vortices (current functions) in
the upper (1) and lower (2) channels with increase in the Rayleigh number.
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Figure 3 gives changes in the flow intensity (current function) of convective vortices in the upper channels
(solid curves) and the vortex in the lower channels (dashed curve) with increase in the Rayleigh number. The negative
values of the current function correspond to the vortex rotating in a counterclockwise direction. To Ra = 104, the con-
vective flow is extremely small and flows in the upper and lower parts differ insignificantly, which confirms the con-
clusion of the heat-conduction regime. Above Ra = 105, the convective flow and heat exchange in the upper parts are
much more intense than in the lower parts.

Figure 4 shows the maximum excess temperature reaching the steady-state regime for the upper (solid curve)
and lower (dashed curve) channels at Ra = 106. Convective flow is established more rapidly in the upper Γ-shaped
parts. Figure 5 shows reaching of the steady-state regime by the current functions characterizing the vortex intensity in
the upper parts (solid curve) and the lower parts (dashed curve) (Ra = 106).

CONCLUSIONS

The results of numerical modeling of the natural convection of air in horizontal channels with a Γ-shaped
cross section (in the form of a "corner") with a constant density of the heat flux at the internal boundary and a fixed
temperature of the external boundary in the range of Rayleigh numbers Ra = 103–106 allow the following conclusions:

1. The structure of the temperature and flow fields in the upper and lower Γ-shaped channels have significant
qualitative and quantitative differences. Two-vortex structures of flow with intense air circulation are formed in the
upper channels, while lower-intensity, single-vortex flows are formed in the lower channels; there are considerable re-
gions of a quiescent, in practice, medium.

2. A heat-conduction regime ensuring virtually the same maximum temperatures in the upper and lower chan-
nels is established to Ra = 105. A convective regime in which the upper Γ-shaped channels are cooled more efficiently
is formed when Ra ≥ 105.

NOTATION

ω, velocity vortex, sec−1; ψ, current function, m2/sec; θ = T − T0, excess temperature, K; T0, fixed temperature
of the external boundary of the channel, K; x, y, z, Cartesian coordinates, m; t, time, sec; U and V, components of the
velocity vector, m/sec; gx and gy, components of the vector of free-fall acceleration, m/sec2; ν, kinematic viscosity,
m2/sec; β, temperature coefficient of volumetric expansion, K−1; a, thermal diffusivity, m2/sec; q0, heat-flux density,
W/m2; λ, thermal conductivity, W/(m⋅K); n, vector of the external normal, m; H, characteristic dimension (height of
the Γ-shaped channel), m; g, vector of free-fall acceleration, m2/sec; Gr, Grashof number; Pr, Prandtl number; Ra,
Rayleigh number; Ra0, minimum Rayleigh number in the numerical calculations; θm′ , limiting value of the dimension-
less excess temperature for air to which one can employ the Boussinesq approximation [14]; θm, maximum excess

Fig. 4. Time dependences of the maximum excess temperatures in the upper
(1) and lower (2) channels.

Fig. 5. Time dependences of the intensity of circulation of vortices (current
function) in the upper (1) and lower (2) channels.

902



temperature in the numerical calculations, K; [K], stiffness matrix; [C], damping matrix; 

F



 , element force vector; 



Φ



,

vector of nodal values; ρ, density, kg/m3; cp, heat capacity, J/(kg⋅K). Subscript: m, maximum.
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